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Supporting access and use of proteomics
through training

From interrogating protein complexes to identifying potential disease biomarkers, mass spectroscopy-based proteomics b)’

plays a significant role in modern day biomedical research and more and more investigators are depending on ‘omics

approaches to address their research questions.Yet, at a place like Oxford — where facilities are stocked with cutting-
edge equipment and our scientists are at the forefront of methodologic development — accessibility, training and financial
feasibility are still a rate-limiting step for applying proteomics techniques to any research programme.The Proteomics

Dr Jillian
Simon

Training Scheme, supported by Oxford’s British Heart Foundation Centre for Research Excellence and the Target
Discovery Institute, aims to tackle these issues by offering an array of training opportunities, easier access to state-of-the-
art technology and financial incentives for those interested in playing a more active role in their proteomics studies.

Proteomics has become an integral part of biomedical research in
the last several decades and mass spectroscopy has played a crucial
role in the field, allowing scientists to evolve our understanding
of biological systems. As scientists continue to push the technical
limits of mass spectroscopy, biotechnology engineers have kept
pace by designing cutting edge instrumentation capable of
churning out large amounts of data from single experiments. Yet,
we find ourselves unequipped to efficiently manage, analyse and
interpret this data, leading to a bottleneck in the translation to
impactful discoveries. In an effort to bridge this gap, initiatives
aimed at educating and training biomedical researchers in
proteomic workflows and data analysis have increased world-
wide. Here at Oxford, the British Heart Foundation’s Centre

for Research Excellence (BHF CRE) and the Target Discovery
Institute (TDI) have partnered to develop the Proteomics
Training initiative, launched in October 2015. The initiative,

led by Jillian Simon (Radcliffe Department of Medicine,

RDM), Mark Crabtree (RDM) and Roman Fischer (TDI),

is a coordinated effort to increase awareness, accessibility and
training for proteomics research while reducing the financial
burden through a number of training opportunities and financial
incentives.

The programme is designed as a 3-tier training system (Figure

1) which offers opportunities for researchers to engage in a
number of ways to increase their awareness of accessibility to
proteomics applications. The first tier, which is applicable to the
majority of researchers, includes seminars covering a broad range
of ‘omics applications for biomedical research, such as the one
held on 20th October 2015 to kick-start the training initiative.
This one-day seminar served as a general overview of proteomics
topics, including an introduction to mass spectroscopy-based
proteomic workflows, case studies on how proteomics has been
applied clinically here at Oxford, as well as mass spectroscopy-
based approaches for metabolomic and lipidomic analysis. Future
seminars are likely to include application of proteomics to large
patient cohorts, overviews of the latest proteomic methods
available and how to harvest information from biomedical ‘omics
data.

The second and third tiers of training, whose purpose is two-fold,
are offered to those looking to use proteomics more regularly in
their research programme. Through termly hands-on training,
small groups of researchers (up to 8) learn what types of workflows
can be applied to address their specific research questions. They’ll
also be taught, through practical modules, how to process, run and
appropriately analyse samples using the mass spectrometer. Once
properly trained, researchers can then benefit from substantial
price reductions by independently carrying out many of the

steps that would otherwise be performed, and charged for, by

the core facility. Advanced training and access is also offered for

a select number of individuals within the CRE who use mass
spectroscopy-based proteomics routinely as part of their research
programme. This also includes DPhil students who wish to

rotate in the Advanced Proteomics Facility as part of their DPhil
training.

Apart from training, the initiative has also included a large
financial contribution from the CRE, along with several

other institutions, to purchase the most state-of-the-art mass
spectrometer on the market, the Orbitrap Fusion™ Lumos™.

This novel instrumentation offers many advantages over previous
models, including increased sensitivity and resolution required

to perform robust quantitation of proteins using multiplexing, as
well as the ability to carry out deep mining of post-translational
modifications. Now Oxford researchers will be able to perform
proteomic analysis with greater detail and from new angles. In
addition, the new Fusion™ Lumos™ will improve the ability

to analyse complex samples, particularly those coming from the
clinic which suffer from large heterogeneity and high dynamic
ranges of protein expression, and make high-throughput analysis
more feasible. These capabilities are particularly important given
the emergence of personalized medicine and ‘Big Data’, which rely
heavily on ‘omics approaches to help with patient stratification and
understanding disease mechanisms (1).

Introducing new methods and applications for proteomics,
increasing access to cutting edge technology, and training our
researchers to conduct, interpret and analyse proteomics datasets
is essential to create a foundation on which we can continue to
build a strong proteomics programme here at Oxford. In a ‘Big
Data’ era, where much emphasis will be placed on ‘omics tools to
drive biomedical research, this foundation will be vital to helping
researchers interface disciplines and work together effectively to
tackle their scientific questions. It is our hope that this training
scheme will aid in laying that foundation and will encourage more
researchers to play an active role in their proteomics studies.

For those interested in finding out more about what training is
currently being offered, how to access the financial benefits, or for
general inquires you can visit the scheme’s website at: http:/www.

cardioscience.ox.ac.uk/mass-spectroscopy-based-omics-training-

and-facilities.

References:

I.Alyass A, et al (2015) From big data analysis to personalized medicine
for all: challenges and opportunities. BMC Med Genomics 8: 33.

Proteomics Training Initiative Scheme

Instrument Training and Supervised Access:

Provide advanced training on the instrument and
supervised access for selected individuals .
Figure I:

Overview of 3-tier
training system
offered as part of the
Proteomics Training

Hands-on Skills Training:

Provide hands-on training sessions in basic
proteomic lab techniques for small groups of
regular instrument users.

Proteomics Training Seminar(s):

Offer seminars on topics related to mass
spectroscopy-based ‘omics methods and
applications. Open to all biomedical
researchers.

Initiative.

Dr Jillian Simon is a Postdoctoral Researcher in the Casadei group,

Department of Cardiovascular Medicine
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Induced pluripotent stem cell-derived
neuronal cells:

b)’ espite significant research into neurodegenerative disorders including Alzheimer’s (AD) and
Dr Cynthia Parkinson’s disease (PD), our understanding of the pathogenic mechanisms leading to neuronal
i cell death remains poor. This slow progress is mainly due to the inaccessibility of the human brain.
Advances in induced pluripotent stem cell (iPSC) technology enable the generation of clinically
relevant neuronal cells in vitro through the reprogramming of human somatic cells into pluripotent

stem cells, which can then be re-differentiated into disease-specific cell types of interest.

In the last four years, multiple studies on
iPSC-derived neurons generated from patients
affected by monogenic forms of AD or PD
have demonstrated that this cellular model

can be useful for identifying altered cellular
phenotypes. For example, Reinhardt e a/ found
that the correction of LRRK2-G2019S genetic
variant, the most common known genetic
cause of PD, in iPSC-derived dopaminergic
neurons generated from PD patients resulted in
the rescue of aberrant cellular phenotypes (1).
However, all studies published so far present
two weaknesses: (i) no systematic evaluation

of the cellular identity of the iPSC-derived
neurons that were generated and (ii), in most
cases, the cellular disease-associated phenotypes
identified were already known or predicted,
and no unbiased systematic investigation of
the underlying molecular perturbation(s) was
performed. Given the genetic predisposition
being studied in these models, a valuable
hypothesis-free tool to elucidate cellular
molecular perturbations is to generate genome-
wide transcriptomic profiles. Here, I will
briefly explore some lessons learned from
transcriptomic studies performed in iPSC-
derived neuronal cell populations within Oxford
University’s (2) and StemBANCC’s research

programmes (3).

Lesson 1: iPSC-derived neurons are immature

'The comparison of global transcriptional
profiles of iPSC-derived neurons with those of
post-mortem human brain tissue at different
developmental stages shows that the iPSC-
derived cultures are dominated by immature
neuronal populations. This observation raises
the question of how relevant this iz vifro model
is for neurodegenerative disorders, for which
age-related changes in the brain are key to

the pathogenic process. However, different
iPSC-derived neuronal types appear to achieve

different maturities iz vitro, with dopaminergic
neurons significantly more mature than cortical
neurons. Indeed, a recent developmental atlas
of gene expression in the Macaque found that
the neocortex matured relatively very late (4),
suggesting that driving the maturity of iPSC-

derived cortical neurons will be a challenge.

Lesson 2: iPSC-derived neurons populations
are heterogeneous

Analysis of transcriptomic profiles of technical
replicates of iPSC-derived neurons shows

that they vary in maturity, demonstrating
significant cellular heterogeneity. This cellular
heterogeneity can be a potential confounder

in the comparison of gene expression profiles
between iPSC-derived cell lines. To address
this problem, there are currently two solutions.
The first is to purify iPSC-derived neurons

by using specific markers to the neuronal
identify. For example, iPSC-derived human
dopaminergic neurons can be FACS sorted
using the intracellular marker tyrosine
hydroxylase (5). However, this requires prior
knowledge of neuronal markers expressed and
that the cells are fixed prior to sorting, and thus
killed, although this is perhaps not the case for
an extracellular marker. A second approach is
to employ single-cell sequencing approaches to
examine the transcriptomes of individual cells
from cultures and then to identify equivalent
populations for comparative studies (6) (Figure

1A).

Lesson 3: Differential expression gene
analyses allows the identification of molecular
and phenotypic perturbations

Currently, a major issue for biologists is that the
functions of most genes are poorly understood
and it can be difficult to formulate hypotheses
as to the perturbed molecular and cellular

4 | Oxford University Biochemical Society
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Figure I: Transcriptomic analyses in iPSC derived neurons.

(A) Transcriptomic profile of individual iPSC derived cortical neurons of two cell lines. This graph illustrates the
possibilities offered by this type of technology to identify differentially expressed genes between two iPSC lines
(green and red) in a selected homogenous cell population (black circle) (figure from Volpato et al. (8)

(B) Given a disease transcriptomic profile, with some genes showing increased expression and other showing
decreased expression, we can search publicly available drug response profiles for a drug that is known to have the
opposite effect on cells. Conversely, some drugs have a gene expression profile similar to disease transcriptomic

profiles (yellow drug) and can induce the disease.

process from a list of differentially expressed
genes. To identify them systemically, it is
possible to use gene network-based methods,
which assume that disease-associated genes
operate through a limited number of shared
molecular processes and seek to detect patterns
of functional convergence across a given set

of genes. For example, we found that genes
that were differentially expressed between

PD LRRK2-G2019S converge functionally.
We showed also that the abnormal motor
capabilities/coordination/movement mouse
phenotype annotation, coinciding with clinical
manifestations of PD, is overrepresented in the
annotations of this gene set (5).

Lesson 4: Therapeutic molecules that
can reverse disease-associated molecular
perturbations can be identified

One key aim following the identification of a
molecular perturbation associated with disease
is to identify a therapeutic molecule that might
reverse that perturbation. The transcriptomic
response of cells following exposure to a given
drug is known for over 1000 compounds, and
there are significant efforts underway to expand
both the list of compounds and the cell types
exposed. Given a gene expression signature
corresponding to a molecular perturbation, the
aim is to identify compounds that provoke an
anti-correlated transcriptomic response (Figure
1B) reasoning that the drug-induced profile
will cancel out the disease-induced profile.

For example, in our work, the PD LRRK2-
G20198 disease-associated profile was opposed
by that induced by clioquinol, a drug known to
rescue dopamine neuron loss and Parkinsonian

behavioural phenotypes in mouse models (7).

These lessons taken together, despite significant
challenges remaining, show that RNA
sequencing profiles obtained from iPSC-derived
cell types have the translational potential to
identify both the perturbed molecular pathways
and the therapeutic molecules that may act to
ameliorate the effects, but care must be taken

to consider both the maturity and cellular

heterogeneity of iPSC-derived populations.

References:

I. Reinhardt P, et al (2013) Genetic correction of a LRRK2
mutation in human iPSCs links parkinsonian neurodegeneration
to ERK-dependent changes in gene expression. Cell Stem Cell
12(3): 354-367.

2. ODPC (2010) The Oxford Parkinson’s Disease Centre.
Available at http://www.everychildmatters.gov.uk/health/
healthyschools/ [Accessed 10th August 2016]

3. StemBANCC (2012) Stem Cells for Drugs Discovery
Available at http://www.stembancc.org/ [Accessed 10th August
2016]

4. Bakken T, et al (2016) A comprehensive transcriptional map
of primate brain development. Nature 13;535(7612):367-375.

5. Sandor C, et al (2016) Transcriptomic profiling of purified
patient-derived dopamine neurons identifies convergent
perturbations and therapeutics for Parkinson’s disease. Hum
Mol Genet (in revision)

6. Stegle O, et al (2015) Computational and analytical challenges
in single-cell transcriptomics. Nat Rev Genet 16 (3):133—45.

7. Lei P, et al (2015) Clioquinol rescues Parkinsonism and
dementia phenotypes of the tau knockout mouse. Neurobiol Dis
81:168-175.

8. Volpato V, et al (2016) Multi-omic experiments (in
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Cynthia Sandor is a Postdoctoral Researcher in Dr Caleb Webber’s

group in the Department of Physiology, Anatomy and Genetics,

Oxford
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Metabolomics: a snapshot

b he understanding of biological systems has seen significant contributions from the application of ‘omics’
Y technologies in recent years. One of the youngest of these, ‘metabolomics’ aims to provide a window on
Professor global metabolic changes and is rapidly becoming an indispensable tool for discovering how small molecule

James
McCuIIagh an individual’s personalised cellular response (1).

chemistry integrates with cell biology. In this context, metabolomics has a tremendous potential for enabling a
better understanding of disease processes and contributing to the development of medicines that are tailored to

The McCaullagh lab, based in the Mass Spectrometry Research Facility in the Department of Chemistry, is focussed
on the development and application of analytical methods for understanding small molecule chemistry at the
interface with biology and medicine, with a special interest in metabolomics.We are currently developing analytical
methodologies and performing metabolomics experiments with a number of collaborators across the University
and beyond.This short article provides a brief snapshot of metabolomics in the context of an ongoing project to

look at the metabolic impact of a single gene mutation.

On the screen in front of me is a database of over 18,000 animal
and plant metabolites containing molecular structures, chemical
formulae, isotope abundances and predictive fragmentation
patterns. I am in the process of comparing information in the
database with experimental data from liquid chromatography
coupled to high mass accuracy tandem mass spectrometry (LC/
MS/MS) in order to identify metabolites. In our sample extracts
over 7000 compounds have been measured.

We are conducting a mass spectrometry-based metabolomics
experiment comparing an immortalised glioblastoma cell line
(LN18) with a mutated form in which the gene for isocitrate
dehydrogenase (IDH1) has an amino acid change in the
active site. This mutation is found in over 70% of low grade
gliomas and secondary glioblastomas that have a heterozygous
somatic mutation (R132H) in IDH1. Figure 1 shows a 3-D
principal component analysis (PCA) of the 7000 compounds
measured across all 18 samples. Samples clustering into ‘wild
type’ and ‘mutant’ groups suggests compositional differences in
compound abundance and composition. One of the beautiful
aspects of metabolomics, and omics experiments generally, is
that they can capture very large amounts of data in a relatively
unbiased way; allowing hypotheses to be generated as well as
tested. I am currently in the process of mapping the changes
observed onto metabolic pathways in order to determine how
expression of the mutant enzyme affects metabolism. Before
discussing the results further I will provide a brief overview of
metabolomics, some of its current challenges and the scope for
future developments and applications.

Why metabolomics?

Metabolites in a biological system are collectively known

as the metabolome. The idea of taking a snapshot of the
entire metabolome, to learn about changes in metabolism in
response to experimental changes, encapsulates the process
of metabolomics (2). In the context of disease for example,
the metabolome can reflect both up stream genetic changes
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and influences from the external environment. The genome,
transcriptome and proteome dictate what metabolism is
possible but small molecules, which may have an endogenous or
exogenous source, can also modulate gene activity and protein
expression. The metabolome therefore is closest to representing
a cell’s molecular phenotype, the product of the interaction
between genes and the environment (3). This makes metabolic
changes a useful indicator of how a cell responds to disease
processes and the potential to find vulnerable pathways suitable
for therapeutic intervention.

The experimental workflow is conceptually straightforward,
analogous to that of proteomics and critical to successful
results (Figure 2). Extraction of metabolites can be particularly
challenging due to the significant chemical differences between
some metabolites and the lack of common monomeric units
like those found in proteins and DNA. Additionally, large
differences in polarity can lead to challenges in choosing
suitable extraction solvents which can bias the experimentally
accessible metabolome (4).

Analytical developments

Although the proteome and genome are larger entities,

the human metabolome, with an estimated size of 3000-

5000 metabolites, is particularly challenging to capture
analytically. This is mainly due to the chemical diversity and
wide range in compound abundances represented in biological
systems, however the sensitivity and speed of LC/MS/MS
makes it an increasingly important analytical approach for
metabolomics. The McCullagh lab has developed the use of
ion-chromatography interfaced directly to mass spectrometry
via an electrolytic ion suppressor which overcomes many of the
problems traditionally associated with coverage or highly polar
and ionic compounds. This enables us to focus on pathways of
central metabolism, which amongst others include glycolysis,
the citric acid cycle, the pentose phosphate pathway, purine and
pyramidine metabolism and multiple pathways associated with
amino acid metabolism. We are also working on complimentary
analytical approaches for lipid and fatty acid analysis.

Identification of metabolites

The identification of large numbers of metabolites in a single
sample requires robust, multiple, independent measurements
for each compound. We use accurate mass measurement,
fragmentation patterns, isotope ratios and chromatographic
retention times for each compound. Such measurements

are made for every compound in experimental samples and
compared to a database of values obtained from the analysis of
authentic standards. Recently we received funding to create a
database containing 500 metabolites. A list of those currently
in our database can be found on the Mass Spectrometry Facility
website (5).

6 | Oxford University Biochemical Society



Cell or tissue
metabolites extracted
(70% MeOH)

Sample: Cells,

Filtered Chromatographic separation ESI-MS
tissues, bio-fluids l

N Figure 2. A
—=———— | metabolomics
workflow which can

e i Vo » , —
el e SN e S
3 2 - @ = L - be divided into four
2 e RS Tt e . | e M ——— parts: 1) Sample
Metabolic patlh'lwav e g/ ua § = — :éi:fii’;":ime Preparation, 2)
i Compounds identified Adduct peaks Retention time alignment H
ma ing.
pping Own database extracted (Progenesis) Isotope pattern Sample analy.SIS' 3)
METLIN (Progenesis) MSMS spectra data processing, and
i 4) data interpretation.
Interpreting Results potential alterations in cellular function may occur but it is at

the metabolic level where the effects can be interpreted in the
context of cellular function. It is still early in its development
but metabolomics has exciting potential to play an important
role in better understanding disease processes and their
treatment in the future.

The general metabolomic experiment is usually characterised by
a large number of variables (metabolites) and a relatively small
number of samples. Therefore multivariate analysis is required
to ensure that any differences between experimental groups are
statistically significant. Because ion abundances are recorded
for all compounds this can be performed on identified and
unidentified compounds and usually involves both unsupervised
(PCA) and supervised discriminant analysis (PLS-DA or

OPLS-DA). PCA analyses show trends and outliers within the =0T Fi 3

dataset (as in Figure 1), while supervised approaches provide a Clgure o e
model that ranks the compounds according to their contribution 20001 bomgarlsonfob ¢ :
to the differences observed between the experimental groups g abundance of bot
considered (6,7) £ 1500 2-hydroxyglutarate

T g enantiomers found

There are usually two main aims for the analysis of E | in the wild type and
metabolomics data. The first is the identification of statistically § 1% mutant cells. The

significant biomarker compounds. The second, which is

really an extension of the first, is to identify and represent e -

metabolic changes in a biologically meaningful context. This

mutant cells show an
over 400 fold increase
in D-2-HG compared

often involves identifying which metabolic pathways have R e to the L form.
been affected by comparing changes in the abundance of their
constituent metabolites (8).
Results of the LN18 mutant and wild type experiment
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observed between the two experimental groups and displayed Nat Rev Mol Cell Bio. 13:263-266.
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cells (Figure 3). Although there are dramatic increases in 2-hydroxyglutarate. Nature. 462: 739-745.
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Opportunities. Cancer Discovery. 7: 730-740.
I1. Dang CV. (2015) Links between metabolism and cancer. Genes Dev.

26:877-890.

tumorigenic function remains unclear. One of the aims of our
research is to use targeted metabolomics to identify additional
metabolic changes associated with the mutation.

Conclusions

Many complex diseases with a significant impact on modern
society, including cancer, diabetes and dementia, have complex
genetic mutations which ultimately manifest in metabolic
effects that remain relatively little explored at a systems level
(11). Understanding these genetic changes helps show where

James McCullagh is an Associate Professor and Head of the Mass

Spectrometry Facility in the Department of Chemistry, University of
Oxford
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